فراکتال و توضیحاتی در باره آن
 


فراکتال ها شکل هایی دارند که از جزییات مشابهی در اندازه های مختلف بر خوردارند. این بدان معناست که وقتی شما به قطعه کوچکی با شکل فراکتال نگاه میکنید، نسخه های کوچکی از همان شکل بزرگ فراکتال را ملاحظه میکنید . انواع بسیار مختلفی از فراکتال ها وجود دارند و در قلب فراکتال ها ریاضیات وجود دارد.

این بدان معنا نیست که انسان باید ریاضیات را برای ایجاد فراکتال ها درک کند . اگر چه هنر فراکتال ها از ریاضیات سر چشمه گرفته ولی در اسارت آن نمی باشد؛ ریاضیات و معادلات ابزار هایی در دستان هنرمندان هستند، ابزاری برای بینا شخصیت و احساس خود. تعدادی از کارهایی که ما انجام می دهیم ممکن است ارزش نا معلومی در مبحث ریاضیات داشته باشد. اما در قلمروی زیبا شناسی، ارزشی غیر قابل انکار دارد.
خیلی از مردم جذب شکلهای زیبای عجیبی می شوند که به عنوانفراکتال شناخته شده اند. با گسترش ماورای درک معمولی از ریاضی به عنوان مجموعه ای از فرمولها ، هندسه ی فراکتالی هنر را با ریاضی می آمیزد که نشان دهند که معادلات بیشتر از مجموعه ای از اعداد هستند. با هندسه فراکتالی می توانیم بیشتر مدلهایی را که در طبیعت می بینیم به تصویر بکشیم مثل زیبا ترین خطوط ساحلی. فراکتال ها برای نشان دادن فرسایش خاک و آنالیز کردن الگوهای زلزله شناسی استفاده می شوند. اما بیشتر از کاربرد های احتمالی برای توصیف الگوهای طبیعی ، به وسیله ی زیبایی تصویری فراکتالها می توانند به دانش آموزان کمک کنند که تفکر دانش آموزان که ریاضیات خشک و غیر قابل دسترسی ست عوض کند ممکن است کشف ریاضی در کلاس را تشویق کند .

یک نمود رایج از هندسه فراکتالی در سری فراکتالی قرار دارد که با اسم به وجود آورنده اش Benoib Mandelbrot که اسم فراکتال را در سال 1975 به وجود آورد در ارتباط است که البته فراکتال هم از لغت لاتین fractious به معنی شکستن گرفته شده است. سری مندل برات سری ای است از تمام نقاطی که مربوط به هر متغیری از Z=Z*Z+C می باشد. به طوریکه ارزش ابتداییZ ، صفر است و C دایمی است. اما ما میتوانیم زیبایی فراکتال های موجود در سری مندل برات را بدون ریاضی به خصوص مر بوط به آن در یابیم. با کمک یک سوپر کامپیوترNCSA و دو برنامه نوشته شده به وسیله ی Michael South و Dr.Robert M.Panoff که با یک گروهی در NCSA کار می کنند ، ممکن است که بسیلری از اصول ابتدایی رایج ریاضی را با مطالعه در سری مندل برات مطالعه کنیم.
برنامه دیگر ، Star struck، راه تولید شده به وسیله سری مندل برات را با هر متغیری به تصویر می کشد.
با یک میکروسکوپ فراکتالی می توانیم در سری به هر جایی که می خواهیم برویم. زیبایی طبیعی فراکتال ها در دانش آموزان انگیزه مطالعه سیستم های ارتباطی ، برنامه های شمارشی، پیشرفت الگو ، ریاضی انتگرالی، ایده بی نهایت و موضوعات دیگردر ریاضی و برنامه های درس علمی را ایجاد می کند.
البته کاربرد های دیگری هم برای فراکتال وجود دارد مثل معرفی شباهت ها ، فشردگی ،بی نهایتی ، تقسیم و کسر فراکتال ها ، توازن و بزرگنمایی و کشف الگوها مانع برای اکثر معلمان وقت است. برنامه های تولیدی فراکتالی که روی کامپیوترهای خصوصی ریخته می شوند کل وقت را می گیرند .خیلی از جنبه های هیجان آور ساختمانی فراکتالی فقط در سایز بزرگتر ظاهر می شوند. با دستیابی یه منابع سوپر کامپیوتری در اینترنت سرعت 500 تا 1000 بار زیاد می شود.
ار آنجایی که فراکتالها جذاب و بی نهایت جزیی هستند بسیار لذت بخش می توانند باشند که در سری مندل برات کشف شوند ، با جستجو در جزییات هر گز دیده نشده یک موضوع جدید و بازی جذاب رنگها . بعد از تمرکز چندین بار می توانید اطمینان یابید که هیچ کس راه دقیق که شما رفته اید ندیده است و شما در حال کشف منطقه تجربه نشده هستید. و همه این جزییات از این معادله ساده می آیند.
یکی از خصوصیات جالب و بی همتای فراکتال بی نهایت توانایی آن در به وجود آوردن Zoom movies است.اینها فیلم های خیره کننده ای هستند که می توانند تغییرات بزرگنمایی را به تصویر بکشند همین طور که تماشا کننده در عمق غیر قابل تصور شکل های فراکتالی تمرکز می کند.
این فیلم های تمرکزی که دارای دامنه وسیع تر از حد جهان هستندمی توانند به آسانی به وجود بیایند. مشاهده شکل هایی که دایماً در حال تغییرهستند و سعی در فهمیدن تغییر در مقیاس می تواند شگفت انگیز باشد.


فراکتال نموداریست از یک کاربرد مختلف.این یک کاربرد فراکتالی ست:
f (n) =f (n)*f (n) +c یا f (n)
2+c
این معادله به عنوان قانون که کاربدر متعدد دارد مشهور است. این معادله مخصوص ،فراکتالی را که به عنوان جولین معروف است شکل می دهد.در این معادله "c" برابر است با یک شماره پیچیده که می تواند هر ارزشی داشته باشدو نتیجه نیز یک جولین دیگر خواهد بود."n" نیز به عنوان متغیر به کار می رود.
متغیر ها مخصوص هستند چرا که با c یعنی یک شماره پیچیده یا فرضی در ارتباط هستند. در موقعی که متغیر ها (x,y) هستند در فراکتال هندسی، این شماره به صورت x+iy نشان داده می شود.به عبارت دیگرx ثابت و y عدد متغیر و فرضی ست. می دانید که در فراکتال هندسی ، محور x محور واقعی و محور y محور فرضی می باشد. حالا بر می گردیم به کاربرد فراکتال و متغیر های جدید یعنی (x+iy) را به جای nبه کار ببریم. حتما می پرسید چگونه این کاربرد آن نمودار های جالب را می سازند.بسیار خوب به جای اینکه نتیجه کاربرد یک خط باشد فقط یک نقطه می شود. که اگر به تعریف نقطه نگاه کنید می تواند بسیار کوچک باشد و این امر نشان می دهد که چگونه می توانیم یک قسمت از یک فراکتال را بزرگ کنیم و یک فراکتال جدید کلی را به دست آوریم.این نقطه روی n ، یعنی متغیر ها وجود دارد.البته فراکتال ها رنگی هستند.
این رنگها چگونه انتخاب می شوند؟ این نیز مثل همه چیز نسبتاً ساده است. اول نیاز به نقطهای برای رنگ کردن دارید. مثلاً به جای نقطه c نقطه (2+li) را انتخاب می کنیم.به خاطر دارید که c می تواند هر عدد پیچیده ای باشد.حالا آن را وارد معادله می کنیم:
f (n)=f(2 + li)=
(2 + li)(2 + li)+(l + li)=
2*2 + 2i + 2i + i
2 + l + li =
5 + 5i + -l=………. Remember i^2 = -l
4 + 5i
اینها متغیر های جدید ما هستند. به یاد داشته باشید که اگر یکسری متغیرها را وارد یک کاربرد بکنید نتیجه یک سری از متغیرها می شود. 4 + 5i سری جدید متغیر هاست . هنوز کارمان تمام نشده است. کاری که بالا انجام دادیم نشان دهنده یک تکرار است. ما ادامه می دهیم که هر سری از متغیر اه را در این کاربرد قرار دهیم تا اینکه بتوانیم ثابت کنیم که این نقطه باعث تشکیل نمودار می شود.رنگ به این طریق انتخاب می شود. اگر یک نقطه بعد از یک تکرار تشکیل شود یک رنگ می گیرد ، هر نقطه بعدی که بعد ار یک تکرار شکل تشکیل میدهد همان رنگ را میگیرد.همه نقاطی که بعد از دوتکرار شکل می گیرد رنگ جدیدی می گیرند. هر نقطه ای که حذف می شود مجبور هستیم که دوباره همه محاسبات را انجام دهیم.اما وقتی که به محدوده پیچیده مندل برات دقیق می شویم می بینیم که c و z جنگ قدرتمندی را انجام داده اند که ببینند آیا z فرار می کند یا نه. در این جنگ مرتباً موضع عوض می شود و تا لبه هر دو پیش می روند، که فقط به طرف صفر بیفتد. این جنگی ست که در تغییر یک میلیونیم یک جز می تواند باعث تفاوت بین همیشه ماندن و به دام افتادن و یا پرتاب شدن به طرف بی نهایت باشد.

ماندل برات و جولیا فراکتال هستند .معنی آن این است که محدوده بین مکان سیاه که ماندل برات است و محل احاطه کننده آن که ماندل برات نیست یک خط ساده یا یک منحنی (یک بعدی) نیست.اما درون یک دایره یا مربع نیز پر نمی شود (دوبعدی). آن قدر پیچیده و دارای جزییات است که بعد فراکتالی خواهد داشت.
وقتیکه بزرگی یک فراکتال را دو برابر می کنید بلندی منحنی و بنا براین محل پوشیده شده فقط دو برابر نمی شود. تمام قسمت های قابل رویت قبلی از منحنی در درازا دو برابر می شود اما نقطه های برجسته جدید منحنی ها قابل رویت می شوند و به درازا می افزایند.
سری ماندل برات ثابت شده که دارای دو بعد فراکتالی می باشد. یعنی اینکه هر بار که بزرگی را دو برابر می کنید در ازای در ازای محدوده چهار برابر می شود. همچنین سری مندل برات می تواند به پیچیدگی یک غراکتال شود. در ازای محدوده سری مندل برات بی نهایت است. می تواند هر طولی که شما بخواهید داشته باشد، اگر آن را با یک قطعه اندازه گیری که به اندازه کافی کوچک باشد اندازه بگیرید.

واضح است که خط بیرونی دور ماندل برات گره کاملی را دور ماندل برات شکل می دهد . این خط که نشان دهنده دو متغیر در آن واحد است، دور لبه های بیرونی به آرامی می گردد و بعد از عقب به خودش وصل می شود. هیچ نقطه دیگری نیست که شمارش متغیر آن دو باشد به جز روی این خط و همه این نقاط روی این خط به وسیله نقاط دیگری که شمارش آن دو است به هم متصل می شوند. این مورد کمتر واصح است اما برای خطوط دیگر نیز به همین نسبت درست است.اگر روی خطی که ده متغیر را نشان می دهد متمرکز شوید ، می توانید همه راه را روی سری ماندل برات طی کنید و برگردید به جایی که شروع کرده بودید. می توانید این کار را روی خطی که نشان دهنده صد یا هزار متغیر باشد انجام دهید. البته زمان زیادی طول می کشد.